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1. Introduction

One recent development in graph theory, suggested by Lagarias and Saks, called pebbling,

has been the subject of much research. It was first introduced into the literature by Chung [1],
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and has been developed by many others including Hulbert, who published a survey of graph

pebbling [5]. There have been many developments since Hulbert’s survey appeared.

Given a graph G, distribute k pebbles (indistinguishable markers) on its vertices in 

some configuration C. Specifically, a configuration on a graph G is a function from 

V(G) to N{0} representing an arrangement of pebbles on G. For our purposes, we 

will always assume that G is connected. A pebbling move (or pebbling step) is 

defined as the removal of two pebbles from some vertex and the placement of one of 

these pebbles on an adjacent vertex. Define the pebbling number, π(G), to be the 

minimum number of pebbles such that regardless of their initial configuration, it is 

possible to move to any root vertex v a pebble by a sequence of pebbling moves. 

Implicit in this definition is the fact that if after moving to vertex v one desires to 

move to another root vertex, the pebbles reset to their original configuration. 

The domination cover pebbling [3] is the combination of two ideas cover pebbling [2] 

and domination [4]. This introduces a new graph invariant called the domination 

cover pebbling number, ψ(G). Recall that, a set of vertices D in G is a dominating set 

if every vertex in G is either in D or adjacent to a vertex of D. The cover pebbling 

number, λ(G), is defined as the minimum number of pebbles required such that given 

any initial configuration of at least  λ(G) pebbles, it is possible to make a series of 

pebbling moves to place at least one pebble on every vertex of G. The domination 

cover pebbling number of a graph G, proposed by A. Teguia, is the minimum number 

ψ(G) of pebbles required such that any initial configuration of at least ψ(G) pebbles 

can be transformed so that the set of vertices that contain pebbles form a dominating 

set of G. In [3], Gardner et.al. have computed domination cover pebbling number for 

complete r-partite graph, path, wheel graph, cycle, and binary tree. We have 

determined the domination cover pebbling number for the odd cycle lollipop graph 

[6] and the square of a path [7].  In section 2, we determine the domination cover 

pebbling number for even cycle lollipop. We use the following theorems from [3] for 

further discussion : 

Domination Cover Pebbling Number for Even Cycle Lollipop
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The domination cover pebbling [3] is the combination of two ideas cover pebbling [2] 

and domination [4]. This introduces a new graph invariant called the domination 

cover pebbling number, ψ(G). Recall that, a set of vertices D in G is a dominating set 

if every vertex in G is either in D or adjacent to a vertex of D. The cover pebbling 

number, λ(G), is defined as the minimum number of pebbles required such that given 

any initial configuration of at least  λ(G) pebbles, it is possible to make a series of 

pebbling moves to place at least one pebble on every vertex of G. The domination 

cover pebbling number of a graph G, proposed by A. Teguia, is the minimum number 

ψ(G) of pebbles required such that any initial configuration of at least ψ(G) pebbles 

can be transformed so that the set of vertices that contain pebbles form a dominating 

set of G. In [3], Gardner et.al. have computed domination cover pebbling number for 

complete r-partite graph, path, wheel graph, cycle, and binary tree. We have 

determined the domination cover pebbling number for the odd cycle lollipop graph 

[6] and the square of a path [7].  In section 2, we determine the domination cover 

pebbling number for even cycle lollipop. We use the following theorems from [3] for 

further discussion : 
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Theorem 1.2[3] Let Cm be a cycle on m vertices. Then the domination cover pebbling 

number of  Cm is given by, 
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Theorem 1.1[3] For n≥3, 
( 1)
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where 

2 3 (mod 3)n n nn       .                      ▄ 

 
From Theorem1.1, we can derive the following: 
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2 Domination cover pebbling number for even cycle lollipop 

Definition2.1 [6] For a pair of integers m≥3 and n≥2, let L(m,n) be the lollipop graph 

of order n+m-1 obtained from a cycle Cm by attaching a path of length n-1 to a vertex 

of the cycle. 

If the cycle Cm in L(m,n) is even, then we call L(m,n) an  even cycle lollipop. 

We will use the following labeling for the graphs Cm and Pn: 

Cm: v0 v1 v2 . . . vm-1 v0 (m≥3) and Pn: 1 2 10 ...
np p pv v v v


(n≥2) 

Now, we proceed to find the domination cover pebbling number for L(m,2), where 

m≥4. 

Here after we use the following notations: consider the paths PA: v0 v1 v2… vk-2 and 

PB: vk vk+1 vk+2… vm-1v0 belonging to the cycle Cm, where m = 2k-2(k≥3).  

Let PC: 
1 2 1

... .p p pn
v v v

  

Let ˆ ( )if v be the number of pebbles at the vertex vi and ˆ ( )Af P be the number of 

pebbles on the path PA.  

Theorem2.2 Let L(m,2) be a lollipop graph where m=2k-2(k≥3) and 

2 (mod3)kk   .Then 
2 ( ), 0 1

( ( ,2))
2 ( ) 1, 2

m k

m k

C if or
L m

C if

 


 

   
. 

Proof: Consider the lollipop graph L(m,2), where m=2k-2(k≥3) and 
2 (mod3)kk   . 

Case1: Let αk=1. Then k?3. 

Consider the distribution of 2ψ(Cm)-1 pebbles on 
1pv , then clearly we cannot cover 

dominate at least one of the vertices  of L(m,2). Thus, ( ( ,2)) 2 ( )mL m C  . 

Domination Cover Pebbling Number for Even Cycle Lollipop
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Now, consider the distribution of 2ψ(Cm) pebbles on the vertices of L(m,2), where 

αk=1. 

Case1.1: Cm contains at least ψ(Cm) pebbles. 

If 
1pv contains one or more pebbles then we are done (by our assumption). So, 

assume that 
1pv contains zero pebbles. This implies that Cm contains 2ψ(Cm) pebbles. 

We have to send a pebble to v0, to cover dominate the vertex 
1pv . Suppose we 

cannot send a pebble to v0. Then, we must have 
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Adding the above inequalities, we get 
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To minimize the L.H.S of (1), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . That 

is, we may assume that all the pebbles are placed at the vertex vk-1. From (1), we get 
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where the second inequality follows since m=2k-2, the third inequality follows since 

αk=1 and  αk-1=0, and the fifth inequality follows since k ≥3. 

 1
1

ˆ, ( ) 2 , 3.k
kThat is f v k
        ---- (3) 

The inequality in (2) contradicts the inequality in (3). So, we can send a pebble to v0 

using at most 2k-1 pebbles. If we use at most 2k-2 pebbles from Cm then the minimum 

number of pebbles that Cm contains is 

2ψ(Cm)-2k-2 
2
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( ) ( ) 2

5.2 3( )
7

( ),

k
m m
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m

m

C C

C

C

 









  

 
   

 


 

where the second equality follows since m=2k-2 and 1k  , and the third inequality 

follows since k≥3. 

If we use exactly 2k-1 pebbles to pebble v0 then clearly all the pebbles are at vk-1. Note 

that we have also cover dominated the vertices v1 and vm-1 by putting a pebble at v0 

using 2k-1 pebbles from vk-1. Now, we have to cover dominate the remaining vertices 

of Cm. For that we need 2 2( )kP  -1 pebbles at vk-1, since the paths vk-1 vk-2 …v2 and 

vk-1 vk …vm-2 are of length k-3. That is, we need 
2 6 1

7

k 
  pebbles (since αk-2 = 2) 

from vk-1. But  

2ψ(Cm)-2k-1
 

k-13.2 32 2  
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 

15.2 6=
7

k  12 3.2 6
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2 6 ,
7

k 
 . 

 where the first equality follows since m = 2k-2, αk = 1 and the fourth inequality 

follows since k ≥ 3.  

Thus, we have enough pebbles to cover dominate the remaining vertices of Cm and 

we are done. 

Domination Cover Pebbling Number for Even Cycle Lollipop
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Case1.2: Cm contains x<ψ(Cm) pebbles. 

This implies that, 
1pv contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)- 

2
x 

    

pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 
2
x 

  
 ≥ψ(Cm) pebbles and we are 

done. 

Case2: Let αk =0. Then   k≥5. 

Consider the distribution of 2 ψ(Cm)-1 pebbles on 
1pv , then clearly we cannot cover 

dominate at least one of the vertices of L(m,2). Thus, ( ( ,2)) 2 ( )mL m C  . 

Now, consider the distribution of 2ψ(Cm) pebbles on the vertices of L(m,2), where 

αk=0. 

Case2.1: Cm contains at least ψ(Cm) pebbles. 

If 
1pv contains one or more pebbles then we are done (by our assumption). So, 

assume that 
1pv contains zero pebbles. This implies that Cm contains 2ψ(Cm) pebbles. 

We have to send a pebble to v0, to cover dominate the vertex
1pv . Suppose we cannot 

send a pebble to v0. Then, we must have, 
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To minimize the L.H.S of (4), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . That 

is, we may assume that all the pebbles are at the vertex vk-1. From (4), we get  
1

1
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kf v 
   .     ---- (5) 

But, we have, 1
ˆ ( ) 2 ( )k mf v C   

    
1

13.2 10 2 ,
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k
k



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where the second equality follows since m=2k-2, αk=0 and third inequality follows 

since k≥5.  

The inequality in (5) contradicts the inequality in (6). So, we can send a pebble to v0 

using at most 2k-1 pebbles. If we use at most 2k-2 pebbles from Cm then the minimum 

number of pebbles that Cm contains is 

2ψ(Cm)-2k-2 

25.2 5( )
7
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m

C

C


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where the first equality follows since m = 2k-2  and 0k  , and the second 

inequality follows since k ≥ 5. 

If we use exactly 2k-1 pebbles to pebble v0 then clearly all the pebbles are at vk-1. Note 

that we have also cover dominated the vertices v1 and vm-1 by putting a pebble at v0 

using 2k-1 pebbles from vk-1. Now, we have to cover dominate the remaining vertices 

of Cm. For that we need 2 2( )kp  pebbles at vk-1, since the paths vk-1 vk-2 …v2 and 

vk-1 vk …vm-2 are of length k-3. That is, we need 
2 4

7

k 
 pebbles (since αk-2 =1) from 

vk-1. But  

2ψ(Cm)-2k-1
 

k-13.2 52 2  
7
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15.2 5=
7

k  12 3.2 5
7

k k 
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2 4 ,
7

k 
  

 where the first equality follows since m = 2k-2, αk = 0 and the fourth inequality 

follows since k ≥ 5.  

Thus, we have enough pebbles to cover dominate the remaining vertices of Cm and 

we are done. 

Case2.2: Cm contains x<ψ(Cm) pebbles. 
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This implies that, 
1pv contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)- 

2
x 

  
pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 

2
x 

  
 ≥ψ(Cm) pebbles and we 

are done. 

Case3: Let αk =2. Then  k≥4. 

Consider the distribution of 2ψ(Cm) pebbles on 
1pv , then clearly we cannot cover 

dominate at least one of the vertices  of L(m,2). Thus, ( ( ,2)) 2 ( )mL m C  +1. 

Now, consider the distribution of 2ψ(Cm)+1 pebbles on the vertices of L(m,2), where 

αk=2. 

Case3.1: Cm contains at least ψ(Cm) pebbles. 

If 
1pv contains one or more pebbles then we are done (by our assumption). So, 

assume that 
1pv contains zero pebbles. This implies that Cm contains 2ψ(Cm)+1 

pebbles. We have to send a pebble to v0, to cover dominate the vertex
1pv . Suppose 

we cannot send a pebble to v0. Then, we must have, 

11
ˆ ( )ˆ ˆ( ) ( ) 2 2 2

2
kk

A B
f vf P f P 

 
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 
.     ---- (7) 

To minimize the L.H.S of (7), it is sufficient to assume that ˆ ( )Af P = 0 = ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at the vertex vk-1. From (7), we get  
1

1
ˆ ( ) 2 1k

kf v 
   .    ---- (8) 

But, we have, 1
ˆ ( ) 2 ( )k mf v C  +1 

 16(2 ) 2 2 ,
7

k
k

      ---- (9) 
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where the second equality follows since m=2k-2, and αk=2 , and the third inequality 

follows since k≥4. 

The inequality in (8) contradicts the inequality in (9). So, we can send a pebble to v0 

using at most 2k-1 pebbles. If we use at most 2k-2 pebbles from Cm then the minimum 

number of pebbles that Cm contains is 

2ψ(Cm)-2k-2 ( )mC , since m = 2k-2, 0k  , and k ≥ 4. 

If we use exactly 2k-1 pebbles to pebble v0 then clearly all the pebbles are at vk-1. Note 

that we have also cover dominated the vertices v1 and vm-1 by putting a pebble at v0 

using 2k-1 pebbles from vk-1. Now, we have to cover dominate the remaining vertices 

of Cm. For that we need 2 2( )kp  -1 =  
2 2 1

7

k 
 pebbles at vk-1, since the paths vk-

1 vk-2 …v2 and vk-1 vk …vm-2 are of length k-3 and αk-2 = 0. But  

2ψ(Cm)-2k-1
 

k-13.2 12 2  
7

k 
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 

15.2 2=
7

k  12 3.2 2
7

k k 


2 2
7

k 
 , 

 where the first equality follows since m = 2k-2, αk = 2 and the fourth inequality 

follows since k ≥ 4.  

Thus, we have enough pebbles to cover dominate the remaining vertices of Cm and 

we are done. 

Case3.2: Cm contains x<ψ(Cm) pebbles. 

This implies that, 
1pv contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)-

2
x 

    

pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 
2
x 

  
 ≥ψ(Cm) pebbles and we are 

done. 

Thus, 
2 ( ), 0 1

( ( ,2))
2 ( ) 1, 2

m k

m k

C if or
L m

C if
 


 


   

 , where m=2k-2(k≥3). 
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Therefore, 
2 ( ), 0 1

( ( ,2))
2 ( ) 1, 2

m k

m k

C if or
L m

C if
 


 


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      where m=2k-2(k≥3) and k-2=αk(mod 3).              ▄ 

Next, we proceed to find the domination cover pebbling number of  L(m,n), where 

m=2k-2(k≥3) and n≥3. 

Theorem 2.3 Let L(m,n) be a lollipop graph with m=2k-2≥4 and n≥3. Then, the 

domination cover pebbling number for L(m,n) is  

1
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1
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( ( , ))
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n
m n k

n
m n k
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, where k-2αk(mod 3). 

Proof: Consider the lollipop graph L(m,n) where m=2k-2≥4 and n≥3. 

Case1: Let αk=0. Then k≥5. 

Consider the distribution of  ψ(L(m,n))-1 pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(m,n). Thus, 
1

2( ( , )) 2 ( ) ( )n
m nL m n C P  

  . 

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case1.1: Cm contains at least ψ(Cm) pebbles. 

If PC contains ψ(Pn-1) pebbles or more, then clearly we are done(by our 

assumption). So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm 

contains 1
22 ( ) ( )n

m nC P x 
  pebbles. Suppose, we cannot move ψ(Pn)-x 

pebbles to v0, then we must have,  
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21
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Adding the above inequalities, we get  

 11
ˆ ( )ˆ ˆ( ) ( ) 2 2 ( ) 2

2
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A B n
f vf P f P P x
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To minimize the L.H.S of (10), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk-1. 

From (10), we get  
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1 2
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where the second inequality follows since  m=2k-2,the third inequality follows since  
1

1
2 20 , 2 ( )

7

n

k k nand P  





   ,the eighth equality follows since  

12 25 ( )
7

n

nk and P
 

  ,and the ninth inequality follows since 

4, 5 3,n k and for n it is obvious   . 

That is, 1
1

ˆ ( ) 2 ( ) .k
k nf v P x         ---- (12) 

The inequality in (11) contradicts the inequality in (12). So, we can always send 

( )nP x  pebbles to v0 at a cost of 2k-1[ ( )nP x  ] pebbles (at most). So, we cover 

dominate the path Pn. Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1
22 ( ) ( ) 2 ( )n k

m n nC P x P x   
    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate the vertices of Cm. But,  
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1
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 

  where the second equality follows since m=2k-2, third inequality follows 
1

1̀
2 30 , 2 ( )

7

n

k k nsince and P  





   ,the fifth inequality follows since 

k5,the seventh inequality follows since n4 and for n=3 it is obvious, and the 

eighth  equality follows since k 5 and n3. 

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case1.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC contains 1
22 ( ) ( )n

m nC P y 
  pebbles. We use at most   

ψ(Pn-1) pebbles to cover dominate the vertices of PC. Thus, we have at least 
1

2 12 ( ) ( ) ( )n
m n nC P y P  

    pebbles in PC.  

We need at most 2n-1 [ψ(Cm)-y] pebbles from PC to cover dominate the vertices of Cm. 

But,  
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n y     

 

where the second inequality follows since n3. Thus, we can send ψ(Cm)-y pebbles 

to v0 and already Cm contains y pebbles and so  Cm contains ψ(Cm) pebbles and we 

are done. 

So, 1
2( ( , )) 2 ( ) ( )n

m nL m n C P  
  . 

Therefore, 1
2( ( , )) 2 ( ) ( )n

m nL m n C P  
  , if αk=0. 

Case2: Let αk=1. Then k≥3. 
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Consider the distribution of ψ(L(m,n))-1pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of  L(m,n). Thus, 
1

2( ( , )) 2 ( ) ( )n
m nL m n C P  

  . 

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case2.1: Cm contains at least ψ(Cm) pebbles. 

If PC contains at least ψ(Pn-1) pebbles, then clearly we are done(by our assumption). 

So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm contains 
1

22 ( ) ( )n
m nC P x 

  pebbles. Suppose, we cannot move ψ(Pn)-x pebbles to v0, 

then we must have,  
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2
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.   ---- (13) 

To minimize the L.H.S of (13), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk-1. 

From (13), we get  
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 where the second inequality follows since m = 2k-2, 1,k   

12 2( )
7

n

nand P
 

 , seventh inequality follows 

12 23 ( )
7

n

nsince k and P
 

    and the ninth inequality follows 

4, 3 3, .since n k and for n it is obvious   . 

That is, 1
1

ˆ ( ) 2 ( ) 1 .k
k nf v P x         ---- (15) 

The inequality in (14) contradicts the inequality in (15). So, we can always send 

( )nP x  pebbles to v0 at a cost of 2k-1[ ( )nP x  ] pebbles(at most). So, we cover 

dominate the path Pn. Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1
22 ( ) ( ) 2 ( )n k

m n nC P x P x   
    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate Cm. But,  
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22 ( ) ( ) 2 ( ) ( )n k

m n n mC P x P x C    
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where the second equality follows since m-2k-2, the third inequality follows 
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
 

    ,the fifth inequality 

follows since n   4 and for n=3 it is obvious, and the seventh inequality follows 

since k3 and n  3.  

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case2.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC contains 1
22 ( ) ( )n

m nC P y 
  pebbles. We use at most   

ψ(Pn-1) pebbles to cover dominate the vertices of PC. Thus, we have at least 
1

2 12 ( ) ( ) ( )n
m n nC P y P  

    pebbles in PC.  

We need at most 2n-1 [ψ(Cm)-y] pebbles from PC to cover dominate the vertices of Cm. 

But,  
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m n n mC P y P C y    
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where the third  inequality follows since n3. Thus, we can send ψ(Cm)-y pebbles to 

v0 and already Cm contains y pebbles and so  Cm contains ψ(Cm) pebbles and we are 

done. 

So, 1
2( ( , )) 2 ( ) ( )n

m nL m n C P  
  . 

Therefore, 1
2( ( , )) 2 ( ) ( )n

m nL m n C P  
  , if αk=1. 

Case3: Let αk=2. Then k≥4. 

Consider the distribution of ψ(L(m,n))-1pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices  of L(m,n). Thus, 
1

1( ( , )) 2 ( ) ( )n
m nL m n C P  

  . 

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case3.1: Cm contains at least ψ(Cm) pebbles. 

If PC contains at least ψ(Pn-1)  pebbles, then clearly we are done(by our assumption). 

So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm contains 
1

12 ( ) ( )n
m nC P x 

  pebbles. Suppose, we cannot move ψ(Pn)-x pebbles to v0, 

then we must have,  

 11
ˆ ( )ˆ ˆ( ) ( ) 2 2 ( ) 2.

2
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f vf P f P P x

 
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 
   ---- (16) 

To minimize the L.H.S of (16), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P .  
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That is, we may assume that all the pebbles are at vk-1. 

From (16), we get  
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where the  second inequality follows since m=2k-2, the third inequality follows since 
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4, 4 3, .since n k and for n it is obvious    

That is, 1
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k nf v P x         ---- (18) 

The inequality in (17) contradicts the inequality in (18). So, we can always send 

( )nP x  pebbles to v0 at a cost of at most 2k-1[ ( )nP x  ] pebbles. So, we cover 

dominate the path Pn. Now, we have to cover dominate Cm. In Cm, we have at least 
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    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate the vertices of Cm. But,  

A.Lourdusamy and T.Mathivanan



34

That is, we may assume that all the pebbles are at vk-1. 
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   , the fourth inequality follows  

12 24 ( )
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n

nsince k and P
 

  , and the seventh inequality follows 

4, 4 3, .since n k and for n it is obvious    

That is, 1
1

ˆ ( ) 2 ( ) 1 .k
k nf v P x         ---- (18) 

The inequality in (17) contradicts the inequality in (18). So, we can always send 

( )nP x  pebbles to v0 at a cost of at most 2k-1[ ( )nP x  ] pebbles. So, we cover 

dominate the path Pn. Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1
12 ( ) ( ) 2 ( )n k

m n nC P x P x   
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pebbles to cover dominate the vertices of Cm. But,  
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where the second equality follows since m=2k-2, the third inequality follows 
1 1

1̀
2 2 2 32 , 1 ( )

7 7

n n

k k nsince and P  
 


 

    ,the fifth inequality 

follows 4 3since n and for n it is obvious  , and the sixth inequality follows  

4 3.since k and n   

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case3.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC contains at least 1
12 ( ) ( )n

m nC P y 
  pebbles. We use at 

most ψ(Pn-1) pebbles to cover dominate the vertices of PC. Thus, we have at least 
1

1 12 ( ) ( ) ( )n
m n nC P y P  

    pebbles in PC.  

Domination Cover Pebbling Number for Even Cycle Lollipop



35

We need at most 2n-1 [ψ(Cm)-y] pebbles from PC to cover dominate the vertices of Cm. 

But,  

 1 1
1 12 ( ) ( ) ( ) 2 ( )n n

m n n mC P y P C y    
       

= 12n y y   = 1(2 1)n y  >0, since n≥3. 

Thus, we can send ψ(Cm)-y pebbles to v0 and already Cm contains y pebbles and so  

Cm contains ψ(Cm) pebbles and we are done. 

So, 1
1( ( , )) 2 ( ) ( )n

m nL m n C P  
  . 

Therefore, 1
1( ( , )) 2 ( ) ( )n

m nL m n C P  
  , if αk=2. 

Hence, 
1

2
1

1

2 ( ) ( ), 0 1
( ( , ))

2 ( ) ( ), 2

n
m n k

n
m n k

C P if or
L m n

C P if

  

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





   
 

, 

 where m=2k-2 and k-2=αk(mod 3).           ▄ 
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